If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-45=0
a = 2; b = 6; c = -45;
Δ = b2-4ac
Δ = 62-4·2·(-45)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{11}}{2*2}=\frac{-6-6\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{11}}{2*2}=\frac{-6+6\sqrt{11}}{4} $
| 2h^2+3h-1224=0 | | 5(x+1)=11/3 | | 3(5s+6)-9s=3(2s+5)-18 | | 2(t-3)-32(t-5)=14-5(3t+2) | | 7b+3.2b5=18.92 | | /5.1y+21.3=–0.3y–24.6 | | 6x-24=9x+6 | | 8=x÷5 | | 4-6a+4a=-1-35+10a | | 2s+3.2-10-5s=-1.9 | | 4×(x+3)=0 | | 1/6d+4/6=1/4(d-2) | | m5=4 | | 10x+21=78 | | -7+b/5=-10 | | y^2-6y+125=0 | | 2x-7(x—1)=3(-2x+4)-9 | | (x+10)(x-5)=(x+) | | 39.6=x+1.20x | | 2^x=30x | | 12y+30+90=0 | | 4x-13+9x+11=180 | | 17-9y=-33+16y | | 8x+4(1-5x)=-6x-14 | | -6y=14+4y=32 | | 8x+4(1-5x)=-6-14 | | 0=15z^2+z-2 | | 51=-9s+5 | | 3x-47=22 | | 11/10x=44/5 | | 0.15(y-0.2=2-0.5(1-y) | | 3x*4x*5x=0 |